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Computer Science Division
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University of California
Berkeley, CA 94720
June 2, 1987

SimPL is a simulator for a multiprocessing LISP that incorporates both delayed and eager-
beaver style evaluation; it runs on a single processor. SimPL can be used to run a variety of pro-
grams with different amounts of parallelism. The results of these simulations can be used to make
generalizations about the benefits gained from use of parallelism in certain symbolic computations,
and, given other data about process-starting time, the optimal number of processors for this type

of computation. Some examples from symbolic mathematical computation are used to illustrate
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the program.
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SimPL: A Simulator for Parallel LISP

Lisa Penninger
Computer Science Division
Electrical l2ngineering and Computer Science

University of California
Berkeley, CA 94720

1. Introduction

In spite of the great interest in speeding up programs by using parallelism, few con-
venient parallel machines are available, and those may not have the types of parallelism that
might be of most benefit. This paper describes a simulator, written in COMMON LisP, that
provides 2 method for experimenting with varying amounts of explicit (programmer-specified)
parallelism, and gathering information about the efliciency of such programs if they were to

be run on a parallel processor.

The system chosen for simulation is Multilisp (7,8]. Its parallel constructs are quite sim-
ple, and rely heavily on the programmer to decide on their efficient and correct use. Multilisp

is explained in a later section of this paper; however, a working knowledge of some dialect of

NS

1.1. Related Work

LISP is assumed.

There is a history of partially implemented or one-of-a-kind machines and systems to

run parallel LISP. See, for example, references on Concurrent LISP [14], Butterfly LISP [13],
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SPUR Lisp [16], Concurrent Common LISP {2] and the Bath Concurrent Lisp Machine [11].

Two models that seem to have emerged, with variants, are Q-LISP [5] and Multilisp [8].

Queue-based multiprocessing LISP, or Q-LISP [5], allows run-time specification of the
type and amount of multiprocessing done. Its parallel constructs, qlet and qlambda, have
similar syntax to let and lambda, but take an additional arguinent, which specifies whether
they are to execute sequentially, in parallel but waiting for values {rom the other arguinents,
or in paralle]l without waiting. An interesting [eature not present in other languages is the
ability to prematurely terminate a process chain and return a value. This is done through
modified versions of catch and throw, thus making this LISP useful for OR parallelism,
which is used in AI applications such as search trees. A simulator has been written, and the

language is currently being implemented on an Alliant multiprocessor,

The Multilisp system is discussed in more detail in a later section of this paper. It is

implemented on the 32-processor Concert system.

In spite of these systems, a simulation provides the flexibility of running programs on
un-realized architectures, although at slow speed. It is easier to change software than

hardware.

Another COMMON LISP simulation package has been implemented by McGehearty and
ICrall [12]. This package differs from SimPL in that it uses a preprocessor to insert function
calls to handle synchronization of the simulated processes, rather than a post-processor. The
synchronization handlers output timing data when the program is run. Then a post-processor

analyzes the data in the same manner as SimPL.

1.2. Outline

Section 2 discusses the categorization of various types of parallel systems. Section 3

describes Multilisp. Section 4 discusses the proper use of high-level explicit parallelisin in pro-
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grams. Section 5 describes SimPL. Section 6 gives a detailed description of the implementa-
tion of &'mPL. Section 7 describes how to use SimPL, the programs that were run, and the

results. Section 8 summarizes the work, and explores directions for further research.

2. Description of Multlllap

Multilisp [7,8] is a LISP dialect that is based on Scheme [1] and has been extended by
the addition of the following four parallel constructs. These constructs, which have been
adapted for use in this simulator, are the only method of introducing parallelism into Multilisp
programs. Unless the programmer explicitly specifies them, the program will execute sequen-

tially.

2.1. Delay

Delays are an implementation of the concept of lazy evaluation where the value of an
expression is not computed until it is required. Therefore, delays may be thought of as exam-
ples of demand-driven data flow programming. An expression which requires the value of a

delay is data-driven; it executes only after its arguments are available, The construct
(delay A)

returns a structure which contains all information necessary to evaluate the expression A at a
later time. Evaluation will not begin until the value of A is actually required. When this
occurs, the delay is computed on the same processor on which its value was required, since the
original process is blocked until it receives that value. Therefore, delays affect the order of

execution of the program, hut do not aflect parallelism.
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2.2, Future
Futures are based on the eventual values developed for Algol 68 on the C.mmp system
[10]. The construct
(future A)

causes its parent process to be pushed onto the current processor's staek, while the current
processor begins evaluation of the expression A. The parent process may be removed from the
stack and exeeuted by any free processor. It is able to continue execution beeause the future
eall will immediately return a structure which acts as a placeholder. This strueture contains
information about the process evaluating A, including whether its value has been computed
yet, and will eventually hold A’s return value. A future which has finished evaluation is said

to be determined.

2.3. Touch
The eonstruct
(touch A)

behaves as the identity operator, unless its argument is an undetermined future or delay, in

which case its execution is suspended until the future or delay has been determined.

2.4. Pecall

In a sequential LISP system, the arguments to a funetion eall are evaluated in turn.
Multilisp allows the arguments to be evaluated in parallel, by use of the construct pcall.

Evaluation of the form
(pcall FABC ...)

results in the expressions F, A, B, C, ... being evaluated in parallel to produee the values f,

a, b, ¢ ... When all have been evaluated, f (presumably a function definition) is applied to
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a, b, ¢, .. tocompute the value of the expression.

This can be implemented by creating futures to compute each of the values, and then

touching each one to force its evaluation before the function is called.

2.5. Implementation

The structure that Multilisp uses to represent a future is considered a separate type. It
contains a LISP value, a task queue, a “‘determined’ flag, and a lock. The LISP value will be
used to contain the final value of the future. The task queue is a list of all processes which
are blocked because they require the future's value, The determined flag is true if the compu-

tation of the future’s value is finished. Initially the flag is false and the queue is empty.

Multilisp evaluates function calls in the same way that a sequential LISP system does,
that is, left-to-right. It checks the type of cach object to see if it is a future structure. I not,
it simply returns the LISP value of the object. Otherwise, if it is a future structure, and the
future is determined, then the LISP value is returned. This value must be recursively checked
to see if it is also a future. The only case in which a process blocks waiting for the value is if
the future is undetermined and its value is required immediately. The process will then be
suspended and added to the task queue of the future. When the future finally does become

determined, these tasks will be activated.

Once a future is determnined, the structure used to represent it no longer serves any pur-
pose, and the Multilisp garbage collector will substitute the value for the structure, thus elim-

inating a level of indirection.

When Multilisp evaluates an expression whose car is future, the processor will push
the original task onto its queue of waiting tasks and proceed with the evaluation of the paral-
lel construct. The original task may be picked up by any idle processor; if there are no idle

processors, then evaluation will procecd as if on a sequential system.
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Similarly, when a processor evaluates
(pcall + A B C),
the originating processor cvaluates the expression A and pushes the expression B onto the

queue associated with the processor. B will be selected for evaluation after A is finished, or

else evaluated on some other processor.

e e O T L A X Ry X A X P

3. Categorles of Parallellsm

Paralle] systems can be divided into classes along several lines. These distinctions are
important to consider when cloosing or implementing a parallel system; some classes are

more appropriate for certain applications. problems.

el T AL TR B B o S S0 D

3.1. Bounds on Resources

If an unlimited number of processors were available for solving a problem, then the sys-
tem would be unbounded. In real life, this is not the case -- systems have a fixed number of

processors; they are bounded. The question to consider with bounded parallelism is how to

T M

best use the processors available, while unbounded parallelism is primarily useful for theoreti-

cal computation of the lower bound on exccution time of a particular problem [15].

i
: 3.2, Complexity of System

The complexity of a system defines another class boundary. The number of instruction
streams (processors) and data streams involved are usually divided into classes of “‘single’ and
“multiple’”’. These two divisions are combined to describe the system, which results in four
possible arrangements: Single Instruction-stream, Single Data-stream (SISD), Multiple
Instruction-stream, Multiple Data-stream (MIMD), Single Instruction-stream, Multiple Data-

stream (SIMD), and Multiple Instruction-streamn, Single Data-stream (MISD). A example of a
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SISD system is the traditional von Neumann machine. MIMD systems are the most general
type, with multiple processors operating on multiple data objects. An array processor would
be an example of a SIMD machine, where a single program performs the same operations on
many data objects at once. MISD systems aren’t generally used, but an example is a pipe-
lined architecture, where several processors operate in sequence on a stream of data, each tak-

ing as its input the previous processor's output.,

3.3. Level of Parallellsm

When the primitives of a system implement the parallelism by overlapping machine
instructions presented in a sequential stream, the system is said to employ low-level parallel-
ism. An example is a pipelined CPU, where certain parts of cach operation are allowed to
proceed in parallel. When the algorithm itsclf is specified in a parallel fashion, for example, as
the result of combining several distinet proeessing streams with occasional interloeks, then
high-level parallelism is being used. Multilisp is an example of the use of yet higher-level
parallelism, although the programmer still must specify where the parallelism can oecur, the

precise ordering of processing and interlocks may not be specified.

3.4. Strategy for Problem Solving

In AND parallelism, the problem to be solved is divided into several tasks executed in
parallel, and all results are required for completion. An example is computing the arguments
to an addition function in parallel, since both of the values are required for the addition to

finish.

In OR parallelism, only one of the tasks must be completed. The other processes may
then be terminated. An example is searching the branches of a game tree in parallel. If one
of the branches shows a win, then it is not necessary to finish searching the others. Tasks

which pursue alternative strategies in this way are called colluding processes [9]. Unlike AND

R S S S~ — ] — I L b iy



parallelism, OR parallelism is also uscful on sequential multitasking systems, as the overhead
of scheduling processes can be offset by the time saved if one process finishes much sooncr

than the others.

3.5. Flow of Control

Traditional von Ncumann programs consist of a scrics of instructions which execute in
the order spccificd by the programmer. llowever, another model cxists, called data flow com-
putation A data flow program consists of a group of instructions whosc order of execution is
detcrmined by the interdependencies of the data they operate on. There are two divisions of
data flow programs: data-driven and demand-driven. A data-driven instruction will execute
when its operands arc rcady; a demand-driven instruction will exccute when its result is

required.

3.8. Method of Communication

Two methods of communication between proccsses are the use of shared memory with
monttors and message-passing. A monitor is a data structure or a collection of structures
together with routines to modify it, e. g. a queue with pop and push routines. Mcssage-
passing involves sending copies of data objects to other processors in order to communicate.
This may be done with blocking, i. e. when a process sends a mcssage it blocks until the reci-
pient is ready to rcceive it, or with buffers or queues, so that a proccss may send its mcssage
and go on with other computation without waiting. Several issues must be considered when

designing this type of system:

(i) Do processcs automatically block when scnding or recciving messages, or is there some

other method of synchronization?

(2) How do processes know hiow to contact othcrs they wish to communicate with?
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(3)  What is the format of a message?

(4) How are communications failures handled?

3.7. Type ¢? Symmetry

Typical programs use subroutines, in which the caller must know the name of the callee,
but the callee does not kmow which routine has called it. This is a hierarchical, or asym-

metric transfer of control. An example of symmeiric transfer would be a program which used

coroutines [3]. Coroutines are like subroutines, except that they do not simply return to the

Y

next instruction in the calling procedure. They pass control to each other always by name,

and may have many entry and exit points.

In a paraltel environment, the caller of a subroutine may possibly go on executing

SECE G e e an SRRSO R0

without waiting for the return value. A synchronization point occurs when it reaches a point

where it cannot continue without that value. Coroutines can also be extended to work in the

el

parallel world; a coroutine may execute until it requires some kind of communication with

—

some other routine. At that point, either the other routine is ready and waiting for communi-
cation, or the first routine may have to wait until the other routine also reaches the point

where it is ready to communicate. After that point, they may both continue.

R X e T R Y N e Y

4. Placement of Parallelism

In some parallel systems, the parallelism is implemented transparently by the hardware

R T it = B e =3

and/or software (implicit parallelism). In others, the programmer must specify in the pro-
gram itself which operations may be done ir parallel (explicit parallelism). Still others use a

combination of the two.
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Explicit parallelism can cause programmer headaches in several ways. In a shared
memory system, one must consider whether parts of the program will interfere with each
other il processed in parallel. The overhead involved in creating a new process is important;
if it exceeds the time saved by the oflloading, it is better to execute the computation in-line
on the same processor. Another consideration is how soon the result will be needed. If it is
required by the originating process iminediately, then the originating process will be blocked
until the result is received. The task could have been computed on the original processor with
two benefits: saving the overhead of sending the task to some other processor, and freeing the

second processor for other work.

4.1. Definltion of Concepts

Three properties are useful for determining where to use parallelism for maximum
speedup. A function is strict if the values of its arguments are required for its computation.
An expresion is quick (as defined by Gray [6}), if it would take less time to evaluate an expres-
sion than to create another process to evaluate it. This is implementation-dependent, but a
workable definition is to assume that all primitives are quick, and any combination of primi-
tives is also quick. Quickness is determined relative to a contezt, which is the set of variables

whose values are known to be available at that point. A function call is immediately strict if

r
]
-
§
!
.
\
(

’.'
)
.

. the portion of code it executes before it requires an argument it is strict with respect to is
g quick. This property is also determined relative to a context. Following are the formal
'j definitions for these terms.

] 4.1.1, Strictness

)

: A function is strict wiih respect to its jth argument if it requires the value of that argu-
y

j ment for computation. For instance, cons is not strict with respect to either of its argu-
7

]

|
|
|
|

g ments, since it only needs to know where the values will be stored, and not what they are.
)
|
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The COMMON LISP primitive + is strict with respect to all its arguments. It must have all
the values to be able to return a result. The function set is strict with respect to only its
first argument. It must know which symbol to assign the value to, but it need know only the

address of the value.

4.1.2. Quickness
Gray 6] defines quickness in the following way:
Given a context <c>, an expression is quick in <c> if it is one of the following:
(1) aself-evaluating expression, such as a string or number
(2) quoted expression
(8) simple variable

4) (£ a a ) where f is cither a primitive LISP operator or defined by

1
(defun f (vl vn) E) or

(lambda (\rl vn) E)

where E is quick in <c¢> and for each a, one of the following is true:

J

(a) if a, is a variable, then either

(i)  the value of a, is available in <c>, or

(i) E is not strict with respect to v,

(b) no parallel constructs appear in a, (or its subexpressions) and a, is quick in <c>,

]

or

(c) £ is not strict with respect to its jth argument (in other words, f is a constructor)

and either
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(1) a, is quick in <c>, or

(i) 2, is a parallel construct which does not require a wait.

(5) (it P E, E,) where P, E,, and E, are quick in <c>.
(6) (lambda (v, ... v)) E)

As an example, (car x) is quick in the context <x> (meaning that the value of x is
known to have been computed), but not in the contexts <>, <y>, etc. The primitive cons is

quick in any context.

4.1.3. Immediate Strictness

A function is tmmediately strict with respect to its jth argument if it requires the value
of that argument for computation, but the portion of the function code preceding the point of
that requirement is guick. [For example, the COMMON LISP primitive + may take several
arguments, all of which are required to produce an answer. However, the hardware can add
only two of the arguments at once, so there is a small delay before some of the arguments are
needed. The + function is stilt considered immediately strict with respect to all arguments,
because the computation done before these values are required is quick, since it involves only
LISP primitives. An example of a function which is strict with respect to all its arguments,

but not immediately strict, is the following:

(defun funci (x y)
(1f (null x) (car y) (cdr y)))

This is immediately strict with respect to x, since its value is tested as the first action of the
function. It is not immediately strict with respect to y, because it is not known how long the

fuaction will have to wait for the value of x if the value of x is being computed elsewhere.
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4.2. Application of Concepts

Gray’s basic idea of future placement is to place them only around the arguments to

funetion ealls, and only in the following cases:

(1) If the function is immediately strict with respect to its ith argument and tlere exists a
later (further to the right) argument that is not quick in the eurrent context, then
enclose the ith argument in a future. This allows concurrent evaluation of required

arguments.

(2)  If the function is not fmmediaicly strict with respect to its (th argument, enclose it in

a future. This allows evaluation of arguments concurrently with their use.

5. Description of Si:nPL

SimPL ineludes the same four eonstructs (future, delay, peall, and toueh) as Multilisp.
It is implemented in COMMON LIsP. and thus allows use of all its functions as well, Although
SimPL is compiled, the user program must be run interpreted, for reasons explained in seetion

6.

5.1. Delay
The construct
(delay A)

returns a generated symbol whose value is a structure which eontains all information neees-
sary to evaluate the expression A at a later time. This symbol ias “delay set to t on its
property list. Evaluation of A will not begin until its value is actually required. Once this

happens, the structure will be replaced by thie value.
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To guarantee consistent results between SimPL and a real multiprocessor system, if A is
a function call, it should be a true function. That is, its value can be computed based solely
on its arguments. Although closures save all variable bindings which are lexically visible at
the time the closure is created, the values of these variables can be still be changed. Those
local to the delay will not be affected by the rest of the program, but global variables may.
The programmer should be aware of the possibility that the time at which a delay is

evaluated could affect its result value.

5.2. Future
The construct
(future A)

causes the expression A to be evaluated, and outputs information about timing. It returns a
generated symbol whose value is the result of the evaluation and which has “future set to t
ou its property list. The reason behind returning a symbol as a level of indirection is so that
the simulator will be able to keep track of when a future’s result is demanded. This indirec-

tion is not visible to the user program.

5.3. Touch
The construct
(touch A)

hehaves as the identity operator, unless its argument is a future symbol, in which case it
returns the future’s result, or a delay symbol, in which case it computes the delay if undeter-

mined, or returns its result if determined.
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5.4, Pecall
The construct
(pcall F A B)
is implemented as

(apply (touch (future F)) (touch (future A)) (touch (future B)))

e i i SRR e £ ot "ag B G- A, &

5.5. Implementation

L.

The SimPL systems is intended to simulate the functioning of the above constructs on a

multiprocessor system, but is actually run on a single processor. It outputs timing informa-

tion about the *processes’ created, from which the user may draw conclusions about the mul-

—— i ™

tiprocessing efficiency of the program simulated.

The system is implemented in three phases: the simulation, the analysis, and the output

of plot data. Each phase requires complete output from the preceding one. Intermediate

states are stored in files, and therefore the simulation need be run only once. Then the

]
|
i analysis and output phases may be repeated for each processor configuration desired.
|
; 5.5.1. Simulation Phase

|

The simulator takes an expression to be evaluated. It evaluates the expression sequen-

| tially, logging each occurrence of a future as if it were a separate process. It outputs the start
and end time of each “process”, plus any intermediate times when it is blocked or restarted.

It also determines which processes would be started at the same time if an infinite number of

processors were available. If the number of processors required is greater than 99, the pro-

gram should be recompiled with a larger maximum number so as not to restrict the program’'s

demand for additional processors.
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Figure 1 shows a sample program, which is immediately strict with respect to both its
arguments. Therefore, both of the arguments to this program should be computed as futures,
since the program itself will block until all arguments are available. Figure 2 shows the out-
put from the simulation phase when running the sample program. Package information and
quoting of lowercase symbols has been edited out for clarity, and comments have been added.
The first line is a comment containing the original expression to be evaluated. Following lines
consist of an event number, a ‘“‘process’” name, an event type, and the cpu time used so far.

All events with the same event number would be initiated at the same time if unlimited pro-

cessors were available. A ‘" in the event number field indicates that the timing of the event

3

is directly dependent on some other event. Events are matched based on the ‘‘name" field.

The names are composed of a tag (either “‘sim”, *‘delay”, or “future”, depending on the type
of process) concatenated with a unique number. The event types are: “‘begin-sim’’ and ‘“‘end-

sim’’, which represent the start and end of the simulation, “begin-exec” and ‘“‘end-exec"”,

e e U Sy e e SR

£l o

which represent the start and end of the evaluation of a future, and ‘value-needed”, which

e St id

represents the point at which some process requires the value of the future named in the “id"

v, &

field. The lasi lines are comments showing the final result of the simulation, the number of
futures and delays created during execution, and the number of each whose values were actu-

ally required.

-t o LT e T 2 R

(defun sample (x y)
(+xy (*xx¥P)

Figure 1. Sample Program
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(sample (future (sample (future (¥ 1 2))
(future (¥ 3 4))))
(future (* 5 6)))

Event Name Tvpo Time Comments

0 siml begin-sim 18533 executing entire expres-
sion

1 future2 begin-exec 18616 (sample (future (¥ 1 2))),
parent is siml

2 future3 begin-exec 18700 (¥ 1 2), parent is future2

- future3 end-exec 18766 future3d has completed

2 futured4 begin-exec 18816 (* 3 4), parent is future2

- future4 end-exec 18883 future4 has completed

3 future3 value-needed 18916 future3's value needed by

. future2

4 futured value-needed 18550 futured4's value needed by
future2

6  future3 value-necded 19000 future3's value needed by
future2

6 future4 value-needed 19033 future4's value needed by
future2

- future2 end-exec 19100 future2 has completed

1 future5 begin-exec 19160 (* 5 6), parent is siml

- future5 end-exec 19183 futureb has completed

7 future2 value-needed 19233 future2's value needed by
sim{

8 futureb value-needed 19266 futureb5's value needed by
siml

9 future2 value-needed 19316 future2's value needed by
siml

10 futured value-needed 19366 futureS’'s value needed by
simi

- siml end-sim 19416 the simulation has ended

, 1208

; 4 total futures, 0 futures computed but not needed
; 0 total delays, 0 delays not computed

Figure 2. Sample Output from Simulator

The events shown in Figure 2 are listed in the order they would occur in a single-

processor environment, so that is the order in which they will be discussed.
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The task named simi is responsible for evaluating the entire expression

(sample (future (sample (future (¥ 1 2))
(future (* 3 4))))
(future (* 5 6)))

It begins at time 18533. As it evaluates its arguments, it sees that the first onc is
(future (sample (future (* 1 2)) (future (* 3 4))))
which is a future, so it creates a new task named future2 to cxecute
(sample (future (* t 2)) (future (* 3 4)))

This task is assigned event number 1, since it is the first such task to be created. It begins at

18616.

This new task now evaluates its arguments, discovers that the first one is a future, and

creates another new task named future3, which begins at 18700, to evaluate
(x 1 2).

This task receives an event number of 2, since it cannot possibly occur at the same time as
the task with event number 1, which is its parent task. It finishes at 18766. The second

argument is also a future, and a new task, future4, is created to evaluate

(¥ 3 4)

It finishes at 18883. Next, at 18016, the value of future3 is required by its parent task,
future2. At 18950, the value of future4 is also required. The two values are required

again respectively at 19000 and 19033. Then future?2 finishes, at 19100,

|
|

The original process, simi, is now ready to evaluate its second argument,
(future (* 65 6)).

This is also assigned event number 1, since it occurs at the same tine as the first argument

(there is no intervening computation between the creation of the future for the first argument
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and this one). It begins at 19150 and finishes at 19183. Finally, the parent task simi
requires the values of its two arguments, future2 and future5, at 19233 and 19266, and

again at 19316 and 19366. It finishes at 19416.

The final result is 1208. Four futures were created during computation, and all their

values were eventually required. No delays were created.

5.5.2. Analysis Phase

This program reads data generated by the simulation phase, with the number of proces-
sors available for the simulation being specified as an argument. It constructs a tree of
processes, and outputs timing data for cach event relative to its parent process. It also runs

the output phase.

5.5.2.1. Bounded Analysis

Figure 3 shows some sample output from the analysis phase. The first three fields are

{ the same as before, but with the addition of some new types: “value-received”, which
represents the point at which a process actually receives the value of a future, “blocked”,
which represents the time at which a process is blocked, either because it is waiting for a
future to be determined or because there are not enough processors and it has been pushed
onto a queue to await processing, and ‘‘restarted’’, which represents the time such a process is
able to continue. The cpu time field is now relative to the start time of the process in which
that event occurred. For instance, on line 2 of Figure 3, future?2 starts 83 time units after
its parent, simi, started. The final field is a sequencing number to keep events which occur

at the same time in the proper order for the output phase.
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Event Name Type Time Sequence
0 siml begin-sim 0 1
1 future2 begin-exec 83 2
1 future5 begin-exec 83 3
= futureS5 end-exec 116 4
2  future3 begin-exec 167 b
2 future4 begin-exec 167 6
7 future2 value-needed 183 7
= siml blocked 183 8
o future3 end-axec 233 9
- futured4 end-exec 234 10
3 future3 value-needed 250 11
= future3 value-received 250 12
4 futured4 value-needed 284 13
3 future4 value-received 284 14
5 future3 value-needed 334 16
= future3 value-received 334 16
6 future4 value-needed 387 17
= future4 value-received 367 18
= future2 end-exec 434 19
= simi restarted 434 20
= future2 value-received 434 21
8 futureS value-needed 467 22
= future5 value-received 467 23

future2 value-needed 517 24
= future2 value-received E17 25
10 futureS value-nceded 567 26
= future5 value-received 6567 27
= siml end-sim 617 28

Figure 3. Sample Output from Analyzer

5.5.2.2. Unbounded Analysis

Unbounded analysis is currently done by preallocating ‘‘enough’ processors so that no
process ever blocks for lack of a processor. For the simulations done in this paper, 99 was

enough.
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5.5.3. Output Phase

The third stage reads the previous results and produces plotting data. Figure 4 shows
some sample output from the plot output phase. Each line consists of an x value {cpu time)
and a y value (number of processors in use). At the end of the plotting output, a comment
section gives the maximum number of processors that were in use at one time, the grand total
of processor time used over all processors, the ‘‘reserved” processor time (the maximum
nunmber of processors multiplied by the longest execution thread), and the efficiency of the

system (the percentage of the reserved time which was actually used). Figure 5 shows a

Time Processors in Use

0
0
83
83
116
116
167
167
183
183
233
233
234
234
434
434
617
617
; Maximum of 4 processors in use
; Processor time used: 883
; Total processor time available: 2468
; Percentage used: 35.78

O = = NN WWHBNNWWRL -0

Figure 4. Sample Output from Plot Generator
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sample plot.

8. Detalls of Implementation

The following sections give an outline of how SimPL works, some design decisions which

were made along the way, and some problems with the current iinplemnentation.

6.1. Program OQutline

Here is a description of the three phases of SimPL.
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8.1.1. Simulator

The LISP simulator evaluates the form given it, removes all indirection resulting from

future and delay structures, and then returns and prints this “‘cleaned-up” result.

Since futures and delays look hke function calls in the program, one might think that
they could actually be implemented that way. Normal LISP evaluation cannot be used; if
future were a function call, its argument expression would be evaluated before the the future

function were entered, and all chance to time the expression is gone. For example, in the

expression

s e i X e K S DR v v e i U LY I i e e o

(future (+ 1 2))

e

the future function would receive the integer 3 rather than (+ 1 2). Treating delays as

function calls does not work either. For exainple, delays cun be us-d to implement streams:

(defun integers (i)
(cons i (delay (integers (+ i 1)))))

This will return a stream of all integers starting with 1, but will only calculate the ones which
are needed. In this case, fully evaluating the argument to a delay would lead to a non-

terminating calculation.

Another problem is that when a future or delay is begun, it returns a symbol that will

- TR et SR T et BB B Bt B e W s BERRRRRRY " 32000 e v T

eventually point to the result. This level of indirection remains throughout the simulation,
and thus whenever an object is evaluated it must be checlied to see if it is a future or delay.

The user program should not be affected by this indirection.

Both of these problems are solved by taking control of the evaluation process away from
the LISP evaluator. In COMMON LISP it is possible for the user-written program to gain con-
trol of the evaluation process through two hooks in the interpreter: evalhook, which controls

execution of interpreted code, and applyhook, which controls execution of compiled code.

|
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When eval is called on a form and the value of the symbol *evalhook* is non-nil,
then *evalhook#* and *applyhook# are temporarily set to nil, and control is passed to the
function named by the former value of *evalhook#*. This function is responsible for evaluat-

ing the form and returning its value, and will usually call evalhook to do this.

Applyhook works in much the same way, except that the function named by its value
will receive a function and a sct of already evaluated arguments. llowever, since applyhook
operates on compiled code, it will (depending on the implementation) not be called to evaluate
certain special forms, such as car and cdr. This means that, in compilcd code, there is no
way to check the argument to one of these functions to sce if it is a future. Therefore, the
programs run under the simulator must be interpreted, resnlting in considerable loss of speed.

The simulator itself can be compiled, and is.

The simulator decides what processes would be started at the same time if infinite pro-
cessors were available, and assigns event numbers to these processes accordingly. Each future
or delay at the same level in an expression is assigned the same event number, unless there is
an intervening normal expression, in which case the event number must be incremented. It is
also incremented whenever the first future at a level is encountered. For instance, in the

expression
(+ (future A) (future B) (¥ 1 2) (future C))

the first two futurcs would be considered to have star-ed at essentially the same time, but the
third would start later because of the intervening multiplication. This is done by keeping
track of the depth inside an expression, and the type (future or non-future) of the last expres-

sion evaluated at that depth.

During evaluation of the arguments to a function call, if a future or delay is encoun-
tered, it is necessary to know whether the function can proceed without its value (whether the

function is ymmediately strict). The simulator knows which COMMON LISP built-in functions
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are immediately strict only through the fact that this information has been hard-coded into
the simulator itself. At load time, a series of commands are executed which add the atom
atrict to the property list of the name of each strict function. Functions which are not
assigned this property are assumed to be non-strict. This causes the program to take longer
to load, but it need be done only once and speeds program execution greatly by making the
test for strictness (which must be done every time a function is called) fast. The choice was
made to indicate strictness rather than nonstrictness, which results in all user functions being
nonstrict by default. This is correct, since they are composed of LISP functions, which may

or may nol be strict themselves.

6.1.2. Analyzer

The analyzer works by building a tree of “process’ structures. Each structure contains
information aboul the process start and end time, the amount of time it has spent in a
blocked state, its child processes, etc. An array of ‘‘processor’ structures is also created. The
analysis is begun by placing the simulation “process' into a “‘processor’’. Then the next event
in the life of each process which is currently “running' is collected, and the one which would
occur first is processed. This could involve creation of a new process or blockage or ending of

an old one. The next events are collected and processed again until all are done.

6.1.3. Qutput

The output phase indicates the efficiency of the simulated system. It sums the processor
time used by all the different processes and divides by the total reserved processor time -- the
time taken by the longest thread of execution multiplied by the number of processors in the
system. I the analysis is for an unbounded number of processors, then the maximum number
of processors actually used at least once is taken to be the number reserved. For a single pro-

cessor, efficiency will always be 100 percent, since the processor is constantly in use
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throughout execution. For multiple processors, some may be used for only a very short time.
Such a processor could be left idle for the whole run-time by suffering a small delay while

waiting on an already busy one. The cost of using a [ull processor to avoid this delay may
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not be realistic if inany independent job streams are available to keep processors busy (as in a

time-shared environment).

8.2. Design Declsions

r 8.2.1. Methods for Simulation
Two methods were considered:

(1)  Simulate multiprocessors by spawning subprocesses. A shared program or file would

be needed to keep track of the process queue and the number of idle processors.
(2)  Execute each “process” sequentially, keeping track of the start and stop times.

The first method has the advantage of being easier to implement and observe, but the
overhead of forking new LISP processes on UNIX and the requirement of sufficient swap space
is too high. Also, the requirement for shared memory would probably necessitate the use of a
disk file and a locking mechanism, which would further slow things down. Lastly, there is a

problem of how to return a LISP object created in a child process to the parent.
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The second method has the advantage of speed, smaller execution size, and simplicity.
The disadvantage lies in trying to keep track of which processes would be running con-

currently on a multiprocessor. Ilowever, the advantages of this meibod seem to outweigh this

problem, so this is the method chosen.

8.2.2. Schedullng of Futures

Several methods were considered for scheduling the evaluation of futures:
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(1) Immediate cvaluation. When a future is encountered, evaluate it right away and store
its value. Log all pertinent information about timning. This method has the advantage

of being the simplest to implement.

(2)  Delayed evaluation. When a future is encountered, treat it as a delay. When its value
is required, evaluate it and log all pertinent information about timing. This method
has the advautage of not having to compute futures whose values are never needed.
However, this does not fit with the definition of Multilisp futures, which says that their
computation begins as soon as there is an available processor, whetler the value is

required or not.

(3)  Stack evaluation. Push each future on a stack in order, and wlen one is nceded, eom-

pute all older (or newer) ones before it. For instance,
(F (future A) (future B) (future C) (future D))

would push A, B, C, and D onto the stack, and if the value of C was the first one
required, it would trigger the evaluation of A and B first. Future D would not be trig-
gered. This has the problem that futures which are not yet needed may be forced to

finish being calculated, thus using more resources at one time than is necessary.

I chose the method of immediate evaluation, since it is consistent with Multilisp, and

also provides futures as a distinct construct from delays.

8.3. Problems

Following is a discussion of a few problems with SimPL.

8.3.1. Extra Strictness

In SimPL, a function must be declared as strict with respect to all or none of its argu-
ments. Unfortunately, the definition of strictness applies separately to each argument to the

function. Thus, a function which is strict with respect to only some of its several arguments
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must be declared strict, even though this will give erroneous results in some cases.

68.3.2. Extra Indirection

In Multilisp, the structure for a determined future is replaced by the future's value
whenever a garbage collection is done. This was not done in SimPL, so as to be able to deter-
mine which objects are values of futures, and therefore he able to keep track of references to
them. Also, in soine implementations of LISP, this is not possible, since the type of an object
is determined from its address in memory. Therefore this level of indirection must be left in

the program.

6.3.3. Memory Usage

The simulator turns off garbage collection (under those implementations of COMMON
LISP where this is possible) so as to get more consistent timnes. Even if it were not turned off,
the values of futures and delays are kept throughout the program, whether they are needed or
not, because these values are assigned to symbols interned in the “‘simpl” package. Therelore,
it is possible that a large simulation with many futures could run out of memory. The user
should take whatever measures are necessary in the particular implementation of COMMON

LisP to insure that enough dynamic memory is allccated prior to running the simulation.

8.3.4. Side Effects

Multilisp handles side effects by simply ignoring them. It is up to the programmer to
insure that either there are no side effects, or that they will not adversely aflect the results of
the program. SimPL also ignores side eflects, but programs which use them will perhaps show
a different result than if executed on a multiprocessor, because the simulator actually runs the

program sequentially.
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6.3.5. Incomplete Delays

The arguments to delays should be true funetions, since the values of global variables

could change in the time between ereation of the delay and execution of it.

7. Executlon of SImPL

This section includes instruetions for the use of SimPl,, and a deseription of the pro-

grams wliell were analyzed for this projeet.

7.1. Instructlons for Use

To prepare for simulation, ehange to the direetory “penn/simpl on ucbarpa and execute

the following commands at the LISP interpreter:

(load “"main.lisp")
(use-package ‘simpl)
(load "your-program")

To run the simulator, enter an expression of the form
(sim expr [outfile])

to the LISP interpreter, where expr is an expression which calls thie program to be simulated,
and outfile is the optional file to send the results to (this must be speeified if the results are

to be analyzed). For example:
(sim (gsort '(3 1 2)))
or

(sim (gsort '(23 1 2)) results.dat)

Next, the simulator output is analyzed:
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(analyze infile [outfile [nprocs]])

Infile should be the name of a file generated with the sim function, and outfile is the
name of an optional output file. If it is not speeified, output goes to the terminal. Nprocs is
the number of processors to use in the simulation. If it is not specified, the simulation will use
as muny processors as needed (up to 99). The output of this cormnand is a set of x-y pairs
with eommented labels, suitable for input to a simple plotting program. Wlhen plotted, these

show the number of processors active at a given time.

7.2. Analysls of Programs

Futures were manually inserted into the following programs {exeept QSORT) according

to the method given in Gray's paper [6]. They were then run in an unbounded environment
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to determine the maximum number of processors which could possibly be required. Then,
they were run in bounded environments with varying numbers of processors between 1 and

the maximum. Data from these runs were used to produce the following graphs,

All programs analyzed in this section are ineluded in Appendix A.

7.2.1. TAK

TAK is one of the Gabriel benchmarks [4], useful mainly for testing the speed of func-
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tion calls. It is used here because of its potential for exponential parallelism.

There are three futures in the program. Since TAK is immediately strict with respect to

its first two arguments, and they are followed by a non-strict, non-quick argument, futures

must be placed around each of the fiist two. Since TAK is not immediately strict with

respect to its last argument, the last also should be enclosed in a future.

Figure 6 shows the results of the analysis on a call to (tak 9 6 3). The X axis shows
the progress of time in simulation units; the Y axis sliows the number of processors which

were busy during eaeh time period.
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Figure 6. TAK: Number of processors in use

The following figures show the results of running four different invocations of TAK:
(tak 6 4 2), (tak 9 6 3), (tak 4 2 1), and (tak 7 5 2) (marked by squares, cir-

cles, triangles, and diamonds, respectively). Figure 7 shows how the run time changes with

SO AL KL SO A R S el e B X W K KKt PSR AN
o

the number of processors in the system. Note th.t it drops quite sharply over the addition of

the first 4 processors, and then levels out.

Figure 8 shows how the efficiency of the system ehanges with the number of proeessors
available. Jaggedness in the lines probably represents inconsisteneies in the time statisties
gathered from running programs on a real system. The efficiency drops steadily as processors

increase, but at different rates depending on the problem.

Figure 9 shows how the speedup changes with the number of processors available. The

speedup is computed by divided the sequential run time (with futures) by the parallel run
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Figure 9. TAK: Speedup Vs. Number of Processors

time. This also levels out quickly, but after a higher number of processors are added, again

varying with the probiem.

7.2.2. QSORT

QSORT is an implementation of Quicksort, complete with futures, taken from

Halstead's paper [8]. The program contains six futures.
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Figure 10 shows the results of the analysis on a quicksort of a list of 20 randomly

selected integers.

As with TAK, the following figures show four different invocations of QSORT, on lists of

20, 30, 40, and 50 randomly generated integers (marked by squares, circles, triangles, and dia-

monds, respectively). Figure 11 shows how the run time changes with the number of proces-

sors available.

Figure 12 shows liow the efficiency of the system changes with the number of processors

available. Figure 13 shows how the speedup chianges with the number of processors available.

All three of these graphs show much more consistency across different levels of complexity.

QSORT is by far the most efficient of the three programs studied here.
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Figure 10. QSORT: Number of processors in use

AT B0 SV ST ST R S R M R SRR AR AT AT R RN R N et N e B G Tt Fa a8 ol Ul Ba B Tt U B N E R B R T T i s T e T R O aE T h Tl L0 D Y oy ey



o8 -3

)
3
]

R e O

8{]{}“'3 e i PP P TP EE R P . AR LR L B AR S s s L o

?DDE{] e E .................................... E. ....................................... :

ﬁnuun B :. .................................. E. ....................................... E

50000 4

s B — F—— =

DI 1| pp— S RS

20000 e Bed e el E, .............. FEdRE mrEd bR R _, ........................................ E

10000 =™ ; ,, ...................................... ]

0

0 . 10 20 30

Number of Processors

Figure 11. QSORT: Run Time Vs. Number of Processors

R R R N B NSt RN .

P B 0 Bt T E 6 B T B o T BB E B 5, VG @l 0 G5 2 Bt 4 08 0 6 U G R e BT A i ot T s e s o emm s e N



37

:
[ !
f i
:
c |
i |
e i
¢ 50+
c ;
y

0 ' i -

0 10 20 30

Number of Processors

Figure 12. QSORT: Efficiency Vs. Number of Processors

IR A A D At A BN el B 00 R Tl 7 a Ba Y s VAT S AT AT AT, U AT AT, A, H AN . VA, UV - Bal Bir tsB N B Bat el Bat Bl ol el ol ol Bl ot R T T o T T S U PSP



38

D) e
5
P 15 1
f 3
{ e
ui [1
u

et e Zob Sl S SR S O
~

0 } i i
! ] 10 20 30
: Number of Processors
o

Figure 13. QSORT: Speedup Vs. Number of Proeessors
)
q 7.2.3. FRPOLY
. Futures were manually inserted in FRPOLY aeeording to the method given in Gray'’s
|
.
: paper [6]. Eaeh function has been categorized aceording to its strietness or immediate striet-
j ness with respeet to eaeh of its arguments. This eategorization is given in the eomments
before eaeh funetion. Fourteen futures have been added to FRPOLY.

of FRPOLY are: (x+y+z+1)2% (x+y+z+1)3 and (x+y+z+1)* (marked by squares, eireles,
and triangles, respeetively). The expression (x+y+z+1) has already been eomputed before

:
l
i Figure 14 shows the results of the analysis on FRPOLY. The three different invoeations
]
|
|
l
|
: the simulation starts.
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Figure 14. FRPOLY: Number of processors in use

Figure 15 shows how the run time changes with the number of processors available.
Figure 16 shows how the efficiency of the system changes with the number of processors avail-
able. Figure 17 shows how the speedup changes with the number of processors available.
FRPOLY seems similar to TAK in its lack of efficiency and inconsistency. It may well be
that the test runs were not complex enough to show consistency, as suggested by the fact that

the higher-complexity runs of QSORT tended to bunch together.

7.3. Results of Tests

Usually thie speedup of a parallel program is calculated by dividing the sequential run
time by the parallel run time. In the best of all possible worlds, this would e equal to N, the
number of processors in the parallel system. If colluding processes are used, the speedup could

even be greater than N.
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Figure 17. FRPOLY: Speedup Vs. Number of Processors

Comparing the run time of a program in a multiprocessing environment with the run
time of the same program in a uniprocessing environment certainly is useful in describing per-
formance gain. However, it does not give any information about why the speedup occurred:
some speedup was gained through parallel computation, and some lost through scheduling and

process creaijon overhead. In order to get this information, one must do two comparisons:

(1)  The run time in a uniprocessing environment against the run time in a multiprocessing

environment which happens to have only one processor.

(2)  The run time in a multiprocessing environment with one processor against that in an

environment with N processors. The first comparison gives an approximation of the
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scheduling overhead. It will probably be too high, since naturally processes will block
more often with fewer processors. The second gives the speedup due to use of parallel

computation,

Figures 18, 19, and 20 show the overhead comparisons. The first line of data shows the
run times for various tests in the uniprocessor environment, i. e., the programs were run under
SimP’L without any futures added. The second line shows the run times for the same pro-
grams, but with futures added. The simulator is limited to one processor. A comparison of
these two lines shows the overhead associated with adding futures to a program, without any
parallel processing. The third line shows the run times for the programs with futures on an

unbounded system. These numbers also happen to be the endpoints of the speedup graphs

Environment Program: tak
# Futures | # Processors [[6 4 2 963 |4 21
0 1 740 3300 100
3 1 3020 16380 380
3 o 620 1100 180

Figure 18. TAIK: Comparisons Showing Overhead

Environment Program: gsort
# Futures | # Processors | 20 items | 30 items | 40 items
0] 1 2540 5420 6920
6 1 16920 39040 51660
6 o 1880 3100 3780

Figure 19. QSORT: Comparisons Showing Overhead
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Environment Program: frpoly
# Futures | # Processors || (x+y+z+1)? | (x+y+z+1)3 | (x+y+z+1)*
o 1 4000 14080 31860
14 1 10940 45900 1256420
14 o 1700 3920 5380

Figure 20. FRPOLY: Comparisons Showing Overhead

shown previously.

The overliead or futures is quite large, but the programs still show speedup in spite of

this.

8. Conclusions

8.1. Directions for Further Work

The overhead involved in scheduling processes, creating futures and delays, and checking
their values is not monitored by SimPL. The insertion of more calls to a timing function in
the evaluation hook function is necessary -- the time should be recorded every time the simu-

lator changes from executing SimPL code to user code.

The interaction between processes using the same global data structures is not simu-
lated, since the simulation is really run sequentially. ‘“Locks’ could probably be implemented

in much the same way as other events in the system.

Functions must be declared strict with respect to all or none of their arguments; no
allowance is made for functions which are strict with respect to only some of their arguments.

This can cause the value of a future or delay to be demanded prematurely if it is passed as an
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argument to a partially strict function. A simple fix would be to change the value of the
atom strict on the function name’s property list to be a list of numbers indicating the argu-

ments it is strict with respect to.

Multiple values should be handled. Currently the hook function works only on functions

which return single values. All but the first of multiple values will be discarded.

This system would be greatly improved if it were made a part of the LISP system rather
than riding atop it. It would run faster, and the indirection in accessing the values of futures

and delays could be eliminated after they had finished evaluation.

e e e et el S i e GV aR s I o o v b ot o aih T oD

The 99 processor limit is imposed because the ‘‘processors” are stored in an array. This
limit could be eliminated by using COMMON Lisp adjustable arrays, or even a list, to store the
processors. When all were busy, and another was requested, it could be easily created and

added to the system.

8.2. Summary of Results

The programs run for this project each use a different mix of symbolic and numerical

. T W e R e ™ N I v W e B Bl

computing. However, the results for all indicate that the possibilities for speedup with paraltel

execution are indeed limited, but vary with the problem under consideration. The leveling off

of both speedup and efficiency in larger systems shows that the maximum benelit can be
achieved without using excessively large systems. The use of simulation to determine this

maximum before purchasing such a system would be wise.
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APPENDIX A

Sample Programs

A.l. TAK

.., Based on TAK in
M Gabriel, "Performance and Evaluvation of Lisp Systems" [4]

(use-package 'simpl)

; Immediately strict in x and y.
(defun tak (x y 2z)
(if (not (< y x))
z
(tak (future (tak (1- x) y z))
(future (tak (1-y) z %))
(future (tak (i1- z) x y)))))

A.2. QSORT

;,; Based on Halstead's gsort in
566 Halstead, "Multilisp: A Language for Concurrent
BB Symbolic Computation* [8]

(use-package 'simpl)

(defun gsort (1)
(gs 1 nil))

(defun gs (1 rest)
(if (null 1)
rest
(let ((parts (partition (car 1) (cdr 1)2))
(gs (car parts)
(future (cons (car 1) (gqs (cdr parts) rest)))))))

(defun partition (elt 1lst)
(if (null 1lst)
(cons nil nil)
(let ((cdrparts (future (partition elt (ecdr 1lst)))))
(1f (> elt (car 1lst))
(cons (cons (car 1lst)
(future (car cdrparts)))

46
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(future (cdr cdrparts)))
(cons (future (car cdrparts))
(cons (car lst)
(future (cdr cdrparts))))))))
A.3. FRPOLY
;;, Based on Fateman's FRPOLY in
SR E Gabriel, "Performance and Evaluation of Lisp Systems" [4]
(use-package ‘simpl)
;5. Checks to see if its argument is zero.
3 Ak pzerop is quick in <x>, and immediately strict
i BLE wvith respect to x.
(defmacro pzerop (x)
‘(let ((x ,x))
(1f (numberp x)
(zerop x)))) ;true for 0 or 0.0
;5 polynomial representation looks like (var (exp . coef) (exp . coef) ...)

.., where the exp's [exponents] are in descending order, no zero coefs are
;.. alloved, and a form (x (0 . 5)) [i.e. 5%x”0, or 6] is reduced to 5.
;.. Coefs can be (recursively) polynomials in other variables.

; Adds uan exponent-coefficient pair to a coefficient list x.
pcoefadd is immediately strict with respect to its
Y second argument, ¢, but not strict with respect to e
588 and x. It is quick in <c>.
(defun pcoefadd (e c x)
(if (pzerop c)
X
(cons (cons e c) x)))

;.. Add a constant ¢ to a polynomial p.
s I pcplus is immediately strict with respect to p,
I and strict with respect to c¢. It is not quick.
(defun pcplus (c p)
(1f (atom p)
(+ pc)
(psimp (car p) (pcplust c (edr p)))))

,;, Adds a constant ¢ to a coefficient list x.
A pcplusl is immediately strict with respect to x,
B b and strict with respect to c. It is not quick.
(defun pcplus! (c x)
(cond ((null x)
(1f (pzerop c)
nil
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(cons (coms 0 ¢) nil)))
((pzerop (caar x))
(pcoefadd 0 (pplus ¢ (cdar x)) nil))
(t
(cons (cons (caar x) (cdar x)) (future (pcplus! c (cdr x)))))))

.., Multiply a constant ¢ by a polynomial p.
NN pctimes is immediately strict with respect to p,
ook but not strict with respect to c¢. It is not quick.
(defun pctimes (c p)
(i1f (atom p)
(* ¢ p)
(psimp (car p) (pctimesi ¢ (edr p)))))

;.. Multiply a constant ¢ by a coefficient list x.
N pctimesl is immediately strict with respect to x,
Ad but not strict with respect to ¢. It is not quick.
(defun pctimesi (c x)

(if (null x)

LR e e Mo o T N "X Y Y XX

\ nil

\ (pcoefadd (future (caar x))

: (future (ptimes c (cdar x)))

\ (future (pctimes! ¢ (edr x))))))

;.. Add two polynomials x and y
( R pplus is immediately strict with respect to X,
‘ N and strict with respect to y. It is not quick.
(defun pplus (x y)
(cond ((atom x) (pcplus x y)) ; is x a constant?
((atom y) (pcplus y x)) ; is y a constant?
((eq (car x) (car y))
(psimp (car x) (pplusi (ecdr y) (cdr x))))
((> (get (car x) 'order) (get (car y) ’'order))
(psimp (car x! (pcplusl y (ecdr x))))
(t (psimp (car y) (pcplust x (cdr ¥))))))

;5. Add two coefficient lists
13 pplusl is immediately strict with respect to x, but
3k not strict with respect to y. It is not quick.
(defun pplus! (x y)
(cond ((null x) y)
((null y) x)
((= (caar x) (caar y))
(pcoefadd (caar x)
(future (pplus (cdar x) (cdar y)))
(future (pplust (cdr x) (cdr y)))))
((> (caar x) (caar y))
(cons (cons (cazr x) (edar x)) (future (pplusi (cdr x) y))))
(t (cons (cons (czar y) (cdar y)) (future (pplusi x (edr y)))))))
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;,, Simplify a polyncmial.
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psimp is immediately strict with respect to X, but
oK not strict with respect to var. It is quick in
% <x, (car x), (caar x)>
(defun psimp (var x)
(cond ((null x) 0)
((atom x) x)
((pzerop (caar x)) (cdar x))
(t (cons var x))))

oo
+

;5 Multiply two polynomials x and y
ptimes Js immediately strict with respect to x, but
i not strict with respect to y. It is not quick.
(defun ptimes (x y)
(cond ((or (pzerop x) (pzerop y)) 0)
((atom x) (pctimes x y))
((atom y) (pctimes y x))
((eq (car x) (car y))
(psimp (car x) (ptimes! (cdr x) (cdr y))))
((> (got (oor x) ‘'order) (get (ear y) 'order))
(psimp (car x) (pctimesi y (cdr x))))
(t (psimp (car y) (pctimes! x (cdr y))))))

P
b+

.., ptimesl does the real work of multiplying two polynomials together.
;;5 The concept: multiplying a polynomial by a *monomial* (a*x”m) is easy.
;5. Multiply by each of the monomials, and add it all together.

;.. Multiply two coefficient lists
P ptimes is immediately strict with respect to x,
Sk but not strict with respect to y. It is not quick.
H put futures around cons’'s arguments, since it is not strict
(defun ptimes! (x y)
(cond ((null x) nil)
((null y) nil)
(t (pplusi (future (do ((y y (cdr y))
(result nil))
((null y) (nreverse result))
(setq result
(cons (cons (future (pplus (caar x)
(caar y)))
(future (ptimes (cdar x)
(cdar y»)»
result);))
(future (ptimest (cdr x) y))))))

... Raise polynomial p to the nth power.
F RN pexptsq is immediately strict with respect to n, but
ok not strict with respect to p. It 1s not quick.
(defun pexptsq (p n)
(1f (oddp n)
(1f (=n 1)
P
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(ptimes p (pexptsq (future (ptimes p p)) (floor n 2))))
(if (zerop n)

1

(pexptsq (future (ptimes p p)) (floor n 2)))))

(eval-vhen (compile load eval)
(setf (get 'x 'order) 1)
(setf (get 'y ‘order) 2)
(setf (get ‘z 'order) 3))
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APPENDIX B

The Code

B.1. analyze.lisp

.., analyze.lisp
;... This file contains the functions for the analysis phase. It uses
;s., functions in util.lisp

(in-package 'simpl)
(use-package 'flavors)
(export ' (analyze))

(defvar *event-timesx) ;Association 1list of event numbers and the time
, the event started

(defvar *ifd*) ;Current input stream

(defvar *ofd*) ;Current output stream

(defvar *sim*) ;The main task
~ (defvar *seqg*) ;Sequence number, used in sorting
: (defvar *infinity* 99) ;The number of processors to allocate if an infinite
ﬁ ; numbevr are requested
ﬁ (defvar *processorsx) ;An array of instances of the processor flavor
] (defvar *call-stackx*) ;Stack of tasks called

(proclaim ' (fixnum *seq* *infinity*))

;.; Add a new event-number, start-time pair to *event-times*
(defmacro add-new-event (number base-time)
'(push (cons ,number ,base-time) *event-timesx))

;,; Get the start time associated with an event number
(defmacro get-base-time (number)
'(cdr (assoc ,number *event-timesx*)))

;.. Does an event number already have a start time stored?
(defmacro event-exists (number)
‘(assoc ,number *event-times*))

., Read something unimportant
(defmacro read-dummy ()
"(read *ifd* nil nil))

;. Read another event number
(defmacro read-number ()
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*(read *ifd* nil nil))

::: Read another task name
(defmacro read-id QO
*(read *ifd> nil nil))

;:, Read anoth .r event type
(defmacro read-type ()
'(read *ifd* nil nil))

:;; Read another time
(defmacro read-time ()
*(read *ifd* nil nil))

;:; Define a "processor" to be something which has a current task
;;, which it is "running®*, and a queue of tasks waiting to be run.
(defflavor processor
((current-task nil)
’ (queue nil))

‘ 0O

g :settable-instance-variables’

g

! s+, Define an *event".

o (defflavor event
(id ;The name of the task this event affects

Y number ;Events with the same number occur at the same time
type ;What kind of event this was
time ,When it happened, relative to the parent
parent) ;Mommy!
0

:settable-instance-variables)

;+, Define a “task" object.
(defflavor task

\ ((1d nil) ;The task’'s "name"®

: (event-number nil) ;Its event number

: (parent-wait 0) ;Amount of time its parent spent idle

q , before this task started

} (start nil) ;Time started
(end nil) ;Time finished
(events nil) ;List of events which happened to this

; task

4 (idle-time 0) ;Amount of time spent idle
(last-time-blocked nil) ;Time at which task was last stopped
(parent nil) ;Task's parent
(processor nil) ;Processor we are running on

j (queue nil)) ;Queue of other tasks walting on our

A . Tesult

. 0

§ :settable-instance-variables)

3

!
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; The "main start® time of a task refers to the actual time it
; starts in the multiprocessor environment, rather than the
;;; relative times which are stored. This time is calculated by
; summing the "main start" time of the task's parent, the amount
; of time the parent spent idle before this task was started,
; and the time at which this task started relative to its parent’s
.., start,
(dafmethod (task :main-start) ()
(let ((parent (send self :parent)))
(if parent
(+ (the fixnum (send self :start))
(the fixnum (send self :parent-wait))
(the fixnum (send parent :main-start)))
(send self :start))))

;», The "main end" time of a task refers to the actual time it
;55 ends in the multiprocessor enviromnment, rather than the
;,, relative times which are stored. This time is calcuiated by
;.. summing the "main start* time of the task's parent, the amount
;,, of time the parent spent idle before this task was started,
;5. and the time at which this task ended relative to its parent’s
;. start.
(defmethod (task :main-end) ()
(+ (the fixnum (send self :end))
(the fixnum (send self :idle-time))
(the fixnum (send self :main-start))))

;5. Set the time this task was last blocked. This is calculated
;5 by summing the "main start" time, the idle time, and the
;.. current time.
(defmethod (task :set-last-time-blocked) (time)
(1f time
(setq last-time-blocked
(+ (the fixnum (send self :main-start))
(the fixnum (send self :idle-time))
(the fixnum time)))
(setq last-time-blocked nil)))

;.. Add some more idle time to the total already accumulated.
;.. The ’"task’ argument is the task whose ending or blocking
.., caused the ’'self’' task to become active again.
(defmethod (task :update-idle-time) (task)
(let ((last-time-active (if (send task :end)
(send task :main-end)
(send task :last-time-blocked))))
(declare (fixnum last-time-active))
(send self :set-idle-time
(+ (the fixnum {send self :idle-time))
(the fixnum (- last-time-active
(the fixnum (send self :last-time-blocked))))))))
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Define a macro to call the analyzer so that quoting

is not necessary. The 'ifile’ argument should be a

;; filo previously created by the 'sim' function. If

; not specified, 'ofile’ will default to the current

standard output, and ‘'nprocs’ will default to "infinity"

(vhich is 99 -- this is not a very big universe)

;;; Example: (analyze sim.results sim.plot 3)

(defmacro analyze (ifile &optional (ofile *standard-outputs)

(nprocs *infinity*))

‘(analyze-func ',ifile ',ofile ,nprocs))

;+, Invoked to analyze an entire simulation. It initializes
;.. global variables, creates the processors, and calls the
;;, functions which do the analysis. Not meant to be called
;. directly, but it won't hurt anything if you do.
(defun analyze-func (ifile ofile nprocs)
(declare (special nprocs))
(declare (fixnum nprocs))
(1f (<= nprocs 0)
(error "Must have more than 0 processors!"))
(setq *processors* (make-array nprocs)
*event-times* nil
*sim* nil
*call-stack* nil
*seq* 0)
(dotimes (1 nprocs) (setf (aref *processors* i) (make-instance 'processor)))
(with-open-file (xifd* ifile :direction :input)
(analyze-buildtree nil 0))
(send (aref *processors* Q) :set-current-task *simx*)
(send *sim* :set-processor (aref *processors* 0))
; Get the next event from each processor, and choose the one which would
, occur first
(let ((tfile (format nil "~A."D.TMP* ifile nprocs)))
(with-open-file (*ofd* tfile :direction :output)
(log-event O (send *sim¥ :id) ’'begin-sim 0)
(do ((pair (choose-next-task) (choose-next-task)))
((null pair))
(1f (car pair) (apply #'do-event pair))))
(sortfile tfile tfile)
(with-open-file (*1fd* tfile :direction :input)
(wvith-open-file (¥ofd* ofile :direction :output)
(analyze-output)))))

.., Invoked when a new task is begun. Returns the
;>, end time of the task. It builds a tree with
the main process as the root, and its subprocesses
;.. branches.
(defun analyze-buildtree (oid base-time)

(declare (fixnum base-time))

(do ((number (read-number) (read-number))

(1d (read-id) (read-id))
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(type (read-type) (read-type))
(time (read-time) (read-time))
(offset 0))
((eq oid id)
(1f id (create-event number id type (- time base-time offset)))
time)
(declare (fixnum number time offset))
(case type
((begin-exec)
(cond ((event-exists number)
(create-event number
id
type
(get-base-time number)))
(- (the fixnum (get-base-time number))
base-time)))

e

(t
(add~new-event number (- time base-time offset))
(create-event number id type (- time base-time offset))))
(setq offset
(+ offset
(the fixnum
(- (the fixnum (analyze-buildtree id time))
time)))))
((begin-sim value-needed end-sim)
(if (eq type 'begin-sim)
(setq base-time time))
(create-event number id type (- time base-time offset)))
(t nil)))) ; do nothing if not one of the above types
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; This function takes the information produced by ‘analyze-buildtree
and converts it to x-y pairs, with x being time and y being
; the number of processors in use. It writes this information to
;5 the output file specified in the call to ‘'analyze'.
(defun analyze-output ()
(declare (special nprocs))
(do ((last-x -1 x)
(max-y 0)
(area 0)
4 (number (read-number) (read-number))
(1d (read-id) (read-id))
(vtype (read-type) (read-type))
' (x (read-time) (read-time))
(dummy (read~dummy) (read-dummy))
(y o»
((null x)
(format *ofd* *~D "D~%* last-x 0)
(format *ofd* “; Maximum of ~D processor™:P in use™%" max-y)
: (format *ofd* “; Processor time used: ~D7%" area)
(if (not (= nprocs *infinity#))
(setq max-y nprocs))
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(format *ofd*
“, Total processor time available: ~D™%" (* last~x max-y))
(format *ofd*
“, Percentage used: ~,2F7%" (/ (float (* 100 area))
(float (* last~x max-y)))))
(declare (fixnum x y last~x max-y area))
(declare (ignore number dummy))
(cond ((= x last-x)
(case type
((begin-sim begin-exec restarted)
(incf y))
((end-sim end-exec blocked)
(decf y))))
(t
(case type
((begin~exec restarted)
(format *ofd* *~D “D™%"* last-x y)
(format *ofd* *~D “D™%* x y)
(incf area (the fixnum (* y (the fixnum (- x last-x)))))
(setq max-y (max y max-y))
(incf y))
((end-exec blocked)
(format *ofd* "~D “D~%" last-x y)
(format *ofd* *"°D "D™%" x y)
(incf area (the fixnum (¥ y (the fixnum (- x last-x)))))
(setq max-y (max y max-y))
(decf y))
((begin-sim)
(incf y)
(setq max-y y)
(format *ofd* “~D “D™%* x 0))
((end-sim)
(format *ofd* “~D ~D~%" last-x y)
(format *ofd* ""D "D”%* x y)
(incf area (the fixnum (* y (the fixnum (- x last-x)))))
(setq max-y (max y max-y))
(dectf y))
(v
(setq x last-x)))))))

;.. Create an event instance, and also a new task if warranted
;.. by the type of event. Stuff the result in the process tree
;.. being built by analyze-buildtree.
(defun create-event (number id type time)
(declare (fixnum number time))
(case type
((begin-sim)
(set id (make-instance 'task :id id :event-number number :start time))
(setq *sim* (symbol-value id))
(push '*sim* *call-stack*))
((begin-exec)
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(let* ((parent (symbol-value (car *call-stack#)))
(events (send parent :events))
(me (make-instance ’'task
:id id
‘event-number number
:start time
:parent parent))
(newevent (make-instance ‘event
:parent parent
:number number
:id id
‘type type
‘time time)))
(set 1d me)
(send parent :set-events (nconc events (list newevent)))
(push id *call-stackx*)))
((ené-exec end-sim value-needed)
(let* ((parent (symbol-value (car *call-stack*)))
(events (send parent :events))
(newevent (make-instance ‘event
.parent parent
‘number number
:id id
:type type
‘time time)))
(send parent :set-events (nconc events (list newevent)))
(1f (not (eq type 'value-needed))
(pop *call-stack*))))
(t (error "ERROR: got “D “S ~S in create-event™%" number id type))))

; Choose one of the events returned by get-next-tasks as the
; next one to execute. This is done by figuring out when each
; would occur in real time and choosing the one which would occur
;.. first.
(defun choose-next-task ()
(car (sort (get-next-tasks)
#'<
:key #'(lambda (x)
(let ((event (car x))
(parent (send (car x) :parent)))
(+ (the fixnum (send event :time))
(the fixnum (send parent :main-start))
(the fixnum (send parent :idle-time))))))))

;.. Return a list of consisting of the next event
;.. which would occur in each active process.
(defun get-next-tasks ()
(declare (special nprocs))
(do ((1 0 (i+ 1))
(result nil))
((>= 1 nprocs) result)
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(declare (fixnum 1))
(let* ((this-processor (aref *processors* 1))
(current-task (send this-processor :current-task))
(event (if current-task (first (send current-task :events)))))
(1f (and current-task event)
(setq result (cons (list event this-processor) result))))))

;;; Take an event, plus the current processor, and make the
;. changes which would result from the occurence of the
;.. event.
(defun do-event (next-event processor)
(declare (special nprocs))
(let* ((current-task (send processor :current-task))
(avents (send current-task :events))
(number (send next-event :number))
(1d (send next-event :1id))
(type (send next-event :type))
(time (send next-event :time)))
(declare (fixnum number time))
(case type
((begin-exec)
(do ((1 0 (1+ 1))
(found nil))
((or found (>= i nprocs))
(cond ((not found)
(send processor
:set-queue (cons current-task
(send processor :queue)))
(send current-task :set-last-time-blocked time)
(send current-task :set-processor nil)
(send (symbol-value id)
:set-parent-wait (send current-task :idle-time))
(log-event '~-
(send current-task :id)
*blocked
(send current-task :last-time-blocked))
(send processor :set-current-task (symbol-value id))
(send (symbol-value id) :set-processor processor))))
(declare (fixnum 1))
(let ((proc (aref *processors* 1)))
(cond ((not (send proc :current-task))
(send proc :set-current-task (symbol-value 1d))
(send (symbol-value id) :set-processor proc)
(send (symbol-value id)
:set-parent-walt (send current-task :idle-time))
(setq found t)))))
(log-event number id type (send (symbol-value id) :main-start))
(send current-task :set-events (cdr events)))
((end-exec end-sim) ; We're finished
; Set the ending time of this task, adding in the wait time
{send current-task :set-end time)
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; This task 1s no longer running on any prucessor
(send current-task :set-processor nil)
; Print self
(log-event '~ id type (send current-task :main-end))
; Pop the event queue
(send current-task :set-events (cdr events))
; Empty the processor
(send processor :set-current-task nil)
; Activate any tasks that might have been waiting for a value from
., this task
| (activate-future-queue current-task processor)
; If there weren’'t any, get one from one of the processor queues
(1f (null (send processor :current-task))
(send processor
:set-current-task (get-idle-task processor
current-task)))
; If we found one, tell it where it's running
(cond ((send processor :current-task)
(send (send processor :current-task) :set-processor processor))))
((blocked-on-value)
(let ((my-main-time (+ time
(the fixnum (send current-task :idle-time))
(the fixnum (send current-task :main-start))))
(its-end-time (if (send (symbol-value id) :end)
(send (symbol-value 1id) :main-end))))
(declare (fixnum my-main-time its-end-time))
(cond (its-end-time
(cond ((<= its-end-time my-main-time)

(log-event '- id ‘value-received my-main-time))
(v

(log-event

'- id 'value-received

(+ time

(the fixnum (send current-task :idle-time))
(the fixnum (send current-task :main-start))
(the fixnum (- its-end-time my-main-time))))
(send current-task
:set-1idle~-time
(+ (the fixnum (- its-end-time my-main-time))
(the fixnum (send current-task
:idle-time))))))
(send current-task :set-events (cdr events)))
(t
(let ((proc (send current-task :processor)))
(send (symbol-value id)
:set-queue (cons current-task
(send (symbol-value id) :queue)))
(send current-task :set-last-time-blocked time)
(log-event '-
(send current-task :id)
"blocked
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(send current-task :last-time-blocked))
(send current-task :set-processor nil)
(send proc :set-current-task
(get-any-idle-task current-task))
(if (send proc :current-task)
(send (send proc :current-task)
:set-processor proc)))))))

((value-needed)

(let ((my-main-time (+ time
(the fixnum (send current-task :idle-time))
(the fixnum (send current-task :main-start))))

(its-end-time (if (send (symbol-value id) :end)

(send (symbol-value id) :main-end))))

(declare (fixnum my-main-time its-end-time))

(log~event number 1id type my-main-time)

(cond (its-end-time

(cond ((<= its-end-time my-main-time)

(log-event '- id 'value-received my-main-time))
(t

(log-event

‘- 1d 'value-received

(+ time

(the fixnum (send current-task :idle-time))
(the fixnum (send current-task :main-start))
(the fixnum (- its-end-time my-main-time))))
(send current-task
:set-idle-time
(+ (the fixnum (- its-end-time my-main-tiine))
(the fixnum (send current-task
:idle-time))))))
(send current-task :set-events (cdr events)))
(t
(let ((proc (send current-task :processor)))
(log-event '~ (send current-task :id) ‘blocked my-main-time)
(send (symbol-value 1d)
:set-queue (cons current-task
(send (symbol-value 1d) :queue)))
(send current-task :set-last-time-blocked time)
(send next-event :set-type 'blocked-on-value)
(send current-task :set-processor nil)
(send proc :set-current-task
(get-any-idle-task current-task))
(1f (send proc :current-task)
(send (send proc :current-task)
:set-processor proc)))))))
(t (error "ERROR: got "D "S ~S in do-even: %" number id type)))))

;;; Actlvate as many tasks as possible from the queue walting for

;5. a particular future (specified by the 'task’ argument) to be

;;; determined. Push the rest onto the queue of the argument processor.
(defun activate-future-queue (task processor)
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(declare (special nprocs))
(do ((1 0 (1+ 1))
(done nil))
((or dome (>= i nprocs)))
(declare (fixnum 1))
(let* ((proc (aref *processors* 1))
(current-task (send proc :current-task)))
(cond ((null current-task)
(let* ((q (send task :queue))
(newtask (car q)))
(cond (newtask
(send proc :set-current-task newtask)
(send newtask :set-processor proc)
(send newtask :update-idle-time task)
(send newtask :set-last-time-blocked nil)
(log-event '-
(send newtask :id)
'restarted
(send task :main-end))
(send task :set-queue (cdr g)))
(v
(setq done t))))))))
;5 If there are any tasks left in the queue, stick them on the
,, current processor's queue.
(cond ((send task :queue)
(send processor
:set-queue (nconc (send task :queue)
(send processor :queue)))
(send task :se%-queue nil))))

;;, Pop an idlec task off a particular processor’s queue.
;15 If the queue is empty, get a task from some other
.;, processor's queue. The ‘oldtask’ argument is passed in
;;, order to access its end time, which is used as the new
;.. task’'s start time.
(defun get-idle-task (proc oldtask)
(let* ((q (send proc :queue))
(newtask (car q)))
(cond (q
(send proc :set-queue (cdr q))
(send newtask :update-idle-time oldtask)
(log-event '~ (send newtask :id) ‘'restarted
(if (send oldtask :end)
(send oldtask :main-end)
(send oldtask :last-time-blocked)))
(send newtask :set-last-time-blocked nil)
newtask)
(v
(get-any-idle--ask oldtask)))))

;;; Pop an idle task off some processor's queue. Return nil if
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;;; all queues are empty. The ‘oldtask’ argument is passed in
order to access its end time, which is used as the new
;2. task's start time.
(defun get-any-idle-task (oldtask)
(declare (special nprocs))
(do* ((1 0 (1+ 1))
(newtask nil))
((or newtask (>= i nprocs)) newtask)
(declare (fixnum 1))
(let* ((proc (aref *processors* 1))
(q (send proc :queue)))
(cond (q
(setq newtask (car q))
(send newtask :update-idle-time oldtask)
(send newtask :set-last-time-blocked nil)
(log-event '-
(send newtask :id)
‘restarted
(1f (send oldtask :end)
(send oldtask :main-end)
(send oldtask :last-time-blocked)))

(send proc :set-queue (cdr q)))))))

e
18

;1; Log some info about an event: the event number, its name,
;;. 1ts type, when it occurred, and a sequence number to keep
77, 1t in the proper order after sorting, times belng equal.
(defun log-event (number id type time)
(declare (fixnum number time))
(format *ofd* "~D “S ~S "D "D"%" number id type time (incf *seq*)))

B.2. ehook.lisp

.., ehook.lisp

This file contains the functions which are required for
;.:: use of the *evalhook* mechanism, It uses functions defined
;o0 in util.lisp

DR
2

(in-package ‘'simpl)
(export *(future delay pcall touch))

(defvar *depth-stack¥) ;A stack whose first element is the

; current depth inside an expression
(defvar *total-delays*) ;The total number of delays created so far.
(defvar *uncomputed-delays*) ;The number of delays whose values have not

; Yet been required.
(defvar *total-futures*) ;The total number of futures created so far.
(defvar *unneeded-futures) ;The number of futures whose values have not
; Yet been required.
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(defvar *call-stackx) ;A stack of the function names called
X (defvar *event-level*) ;A stack of the current event number
X (defvar *future-levels*) ;An association list of event numbers, and an
‘4 ; atom which shows whether the last expression
% ; at that level was a future or not.

A
-

(proclaim ‘(fixnum *total-delaysx
*uncomputed-delays*
*total-futures*
*unneeded-futures*))

;;; Check to see if a function is strict by looking for the
;.. atom ‘'strict’ on its property list. Strict functions
;,, are defined in sim.lisp
(defmacro strict-p (f)

‘(get ,f ‘'strict))

;,; Check to see 1f a object is a symbol representing
;»; a future by looking for the atom ‘future’' omn its
;s, property list.
(defmacro future-p (x)
‘(and (symbolp ,x)
(get .x 'future)))
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;.5 Check to see if a object is a symbol representing
;5. a delay by looking for the atom ‘delay’ on 1ts
;.. property list.
(defmacro delay-p (x)
‘(and (symbolp ,x)
(get ,x ‘delay)))

T R, M T

;3; Define a structure to contain the closure created for a
;»; delay. The purpose of defining the structure is merely
;5 for ease of identification of a delay.
(defstruct (delay-struct (:conc-name delay-))

closure)

;». Expects a symbol vhose value is a delay structure, or the
;55 value resulting from its previous computation. Returns
;5 what value, or computes it if necessary. A side effect is
;55 that the symbol’'s value will be set to the result.
(defun do-delay (expr)
(cond ((delay-struct-p (symbol-value expr))

(decf xuncomputed-delays*)

(logmsg (next-eveni) expr ‘begin-delay)

(set expr (funcall (delay-closure (symbol-value expr))))

(logmsg nil expr ‘'end-delay)

(symbol-value expr))

(t

(logmsg (next-event) expr 'already-computed)

(symboi-value expr))))

%
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Expects a symbol whose value is the result of a future.
If this is the first time it has been requested, the
‘determined’ property is set to TRUE.

- Returns the value, or if the value turns out to be a future

also, recurses.

(defun do-future (f)

(cond ((not (get f ‘'determined))

(setf (get f 'determined) t)
(decf *unneeded-futures*)))

(logmsg (next-event) f 'value-needod)

; Recursively check the value to see if it also is a future.

(let ((f1 (symbol-value f)))

'

(i1f (future-p f1)
(do-future f1)
£1)))

; This is the function which gets control of the evaluation process

from eval, using the *evalhook* variable. It takes a form to
evaluate, plus an optional environment, which is used by Commcn
LISP in determining bindings. It returns the result of evaluating
the form.

(defun ehook (form &optional env)

(push (1+ (the fixnum (car *depth-stack*))) *depth-stackk)
(let* ((depth (car *depth-stack¥))

(future-level (assoc depth xfuture-levelsx))
(values nil))
; Do the bookkeeping stuff to assure that we know what the last
; expression seen at this level was.
(cond ((and (listp form) (eq 'future (car form)))
(cond ((eq 'future (caddr future-level))
(setq *event-level%
(member (cadr future-level) *event-level%)))
(t
(push (next-event) *event-levelx)
(push (list depth (car xevent-levelx) ’'future)
*future-levelsx))))
(v
(push (list depth (car *event-level*) ‘non-future)
¥future-levels*)))
; Check to see what type 'form’ is.
(cond ((listp form)
; It's a 1list -- must be a parallel construct or a
; function call
(case (car form)
(future
(let ((sym (gentemp “future" *simpl-packagex)))
(setf (get sym 'future) t)
(incf *total-futures*)
(incf *unneeded-futures)
(logmsg (car *event-level*) sym 'begin-exec)
(set sym (ehook (cadr form) env))
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(logmsg nil sym 'end-exec)
; If we know the outer function is strict, better
; return the real value instead of the future symbel.
; Hopefully no one would create a future in this
. position anyway.
(1f (strict-p (car *call-stack#))
(setq values (do-future sym))
(setq values sym))))
(delay
(let ((sym (gentemp "delay" *simpl-packagex*)))
(setf (get sym "delay) t)
(incf *uncomputed-delaysx)
(inctf *total-delays¥)
;; Create a list of the atoms in 'form', so that
;; a closure can be made of their bindings
(set sym
(make-delay-struct
:closure (ehook '(function
(lambda ()
(let ((*evalhook* 'ehook))
, (cadr form))))
env)))
(logmsg (next-event) sym 'created)
; If we know the outer function is strict, better
; return the real value instead of the delay symbol.
(1f (strict-p (car *call-stack#*))
(setq values (do-delay sym))
(setq values sym))))
(pcall
(do ((elements (cdr form) (cdr elements))
(newfunc nil)
(newargs nil))
((null elements) (setq values (apply newfunc newargs)))
(let ((sym (gentemp "future® *simpl-package*)))
(setf (get sym 'future) t)
(logmsg (car *event-level*) sym 'begin-exec)
(set sym (ehook (car elements) env))
(logmsg nil sym 'end-exec)
(1f (eq (car elements) (cadr form))
(setq newfunc (symbol-value sym))
(setq newargs
(append newargs (list (symbol-value sym))))))))
(touch
(setq values (ehook (cadr form) env))
(1f (delay-p values)
(setq values (do-delay values)))
(1f (future-p values)
(setq values (do-future values))))
(t
; It must be a regular function call.
(push (car form) *call-stack*)
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(setq values (evalhook form #'ehook nil env))
(setq *call-ctack*
| (cdr (member (car form) *call-stack* :test #'equal)))
| (1f (and (delay-p values)
' (strict-p (car *call-stack*)))
(setq values (do-delay values)))
! (i1f (and (future-p values)
(strict-p (car *call-stackx)))
(setq values (do-future values))))))
. If we're evaluating an argument to a strict function,
; and it's a delay or future symbol, better return the
; Teal value.
((and (delay-p form) (strict-p (car *call-stack*)))
(setq values (do-delay form)))
((and (future-p form) (strict-p (car *call-stack*)))
(setq values (do-future form)))
, Just an ordinary variable.
(t
(setq values (evalhook form #'ehook nil env))
(if (and (delay-p values)
(strict-p (car *call-stack#)))
(setq values (do-delay values)))
(if (and (future-p values)
(strict-p (car *call-stack¥)))
(setq values (do-future values)))))
(setq *future-levels*
(member depth *future-levels*
‘test #'(lambda (x y) (equal x (car y)))))
(pop *depth-stack*)
values))

B.3. main.llsp

(in-package 'simpl)
(setq *simpl-package* *package*)

(cond ((member :excl *features*) (setq *lisp-type* :excl))
((member :lucid *features*) (setq *lisp-type* :lucid))
((member 'common *features*) (setq *lisp-type* :common-11sp))
((member :common *features*) (setq *lisp-type* :common-1lisp))
((member :common-lisp *features*) (setq *lisp-type* :common-1lisp))
(t (error *What kind of lisp is this, anyway?")))

(case *lisp-type*
((:excl)
(use-package 'excl))
(v
(use-package ‘'system)))
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(load *util™)
(load "ehook")
(load "sim*")
(load "analyze")

B.4. sim.lisp

..., sim.lisp
;5. This file contains the functions for the simulation phase.
;... It uses functions defined in util.lisp.

(in-package 'simpl)
(export '(sim))

;55 Mark certain functions as ‘strict’. Only a useful subset of the
;2; strict functions in Common LISP are included here.
(eval-when (load eval)
(mapc #'(lambda (x)
(setf (get x 'strict) t))
'(1istp not null if cond get atom numherp zerop
+ - % = eq equal eql
> < >= <= i+ i- and or car cdr caar cadr
caadr caaar cadar caddr
cdar cddr cdaar cdadr cddar cdddr pprint
print princ prini write write-to-string
prini-to-string princ-to-string write-char
write-string write-line write-byte format oddp evenp)))

;.; Define a macro to call the simulator so that quoting

.., 1s not necessary. The first argument must be the form

;5. to be evaluated. The second argument is the name of the

;5. file to write to. If not specified, it defaults to

., whatever is currently defined as standard output.

;:; Example: (sim (quicksort "(2 1)) results.dat)

(defmacro sim (form &optional (ofile *standard-output*))
‘(with-open-file (¥ofd* ',ofile :direction :output)

(sim-func *,form)))

;.. This function is the real simulator. It takes only the
.., form to be evaluated. It initializes global variables,
;+. turns off garbage collection, and sets up the 'evalhook’
;.. mechanism. It then evaluates the form, turns on garbage
;.. collection, and logs pertinent information. It returns
;.. the result stripped of all futures and delays.
(defun sim-func (form)
(let ((val nil)
(symi (geatemp "sim" *simpl-package*)))
;. Initialize important globals.
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(setq *total-delays* 0
*uncomputed-delays* 0
*total-futures* 0
*unneeded-futures* 0
*call-stack¥ nil
*depth-stack* ' (0)
*event-level* ' (0)
*future-levels* nil
*max-event* 0)
;; Do a garbage collection, then turn it off if we know hov.
;; This allows consistency when the programs are run many
;5 times.
(ge)
#+lucid (gc-off)
;; Write out the form we are evaluating, just for the record.
(format *ofd* *; ~S™%" form)
;; Log the fact that the simulation is beginning.
(logmsg *max-event* symi 'begin-sim)
Turn on the evaluation hook which allows us to capture control
;; from eval, and evaluate the form.
(let ((*evalhook* 'ehook))
(setq val (eval form)))
;5 Log the fact that the simulation has ended.
(logmsg nil symi 'end-sim)
;; Turn garbage collection on again.
#+lucid (gc-on)
;; Build up a tree containing no futures or delays, so we can
;5 print it out as the ’'ansver’.
(setq val (build-it val))
;» Log a bunch of stuff.
(format *ofd*
*; TSTH* val)
(format *ofd*
"; "D total futures, ~D futures computed but not needed~%"
*total-futures* *unneeded-futuresx*)
(format *ofd#*
*, "D total delays, “D delays not computed™%"
*total-delays* *uncomputed-delays*)
;; Return the value. '
val))

)
2

Go through a tree which may contain futures or delays and
substitute their values.

(defun build-it (x)
(cond ((future-p x) (build-it (symbol-value X)))

((delay-p x) (build-it (symbol-value Xx)))

((consp x) (cons (build-it (car x))
(build-it (cdr x))))

(vt x)))
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B.5. util.lisp

;i util.lisp
This file contains some utility functions shared by other parts
of the system.

e
)

(in-package 'simpl)
(defvar *max-event¥) ; The highest event number used so far
(proclaim '(fixnum *max-event*))

;.. Choose the function to use for timing
(eval-when (compile eval)
(case *1isp-type*
((:lucid :excl :common-lisp)
(defmacro cputime () ‘(get-internal-run-time)))
(t
(defmacro cputime () ‘(error "Cannot get cpu time.*)))))

;i Generate the next higher event number
(defun next-event ()
(incf *max-event*))

;5. Write out a message giving the event number, the name of

;5. the task, the type of event, and the time at which it

;. occurred. If the event number is nil (meaning it is related

:;; to some other event), write '— instead.

(defun logmsg (event-number id type)

(1f event-number

(format *ofd* "“D ~S "8 "S”%" event-number id type (cputime))
(format *ofd* "~ ~S ~S "S~%" id type (cputime))))

;;; Flatten a tree into a list.
(defun flatten (1)
(cond ((null 1) 1)
((atom (car 1)) (cons (car 1) (flatten (cdr 1))))
(t (append (flatten (car 1)) (flatten (ecdr 1))))))

;+, Use the UNIX sort utility to sort a file by the 4th and 5th fields,
;», Which should be integers.
(defun sortfile (ifile ofile)
(case *1lisp-typex
((:excl)
(run-shell-command
(format nil "sort +3n +4n -o "A "A" ofile ifile)))

((:lucid)

(run-unix-program

"sort® :arguments (list "+3n" "+4n" "-o" ofile ifile)))
(t
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(error “Cannot sort file -- no way to run a subshell*))))
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